EDITORIAL

Newer biomarkers in tailoring treatment of venous thromboembolism; the paradigm of soluble fibrin-monomer complex

Constantine Antonopoulos

First Department of Vascular Surgery, University of Athens Medical School, Attikon Hospital, Athens, Greece

With significant clinical, financial, and social costs, deep vein thrombosis (DVT) and its potentially lethal sequela, pulmonary embolism (PE), continue to be major global health issues. The silent progression, recurrence risk, and chronic complications like post-thrombotic syndrome (PTS) of DVT continue to pose a challenge to clinicians despite advancements in diagnostic procedures and therapeutic agents. Anticoagulants, including more recent direct oral anticoagulants (DOACs) like dabigatran etexilate and rivaroxaban, as well as more conventional ones like warfarin, are at the forefront of contemporary therapeutic management. Simultaneously, laboratory biomarkers—specifically, soluble fibrin-monomer complexes (SFMC) and D-dimer—have become both potential indicators of therapeutic response and diagnostic tools. This editorial seeks to provide an insightful and clinically meaningful discussion of the interactions between these markers and various anticoagulant regimens.

D-dimer has a well-established clinical utility. It has been appropriated into diagnostic algorithms for suspected thromboembolic events because it is a degradation product of cross-linked fibrin and its elevation indicates recent or ongoing fibrinolysis. It is especially helpful in conjunction with age-adjusted thresholds and pre-test probability scoring systems such as the Wells score. The non-specificity of D-dimer, however, restricts its use as a stand-alone diagnostic or prognostic tool. Elevated levels can be caused by trauma, infection, inflammation, and even aging. In contrast, SFMC captures the early phases of coagulation prior to the emergence of a fully formed thrombus, making it a more direct indicator of thrombin activity and fibrin formation. Because of this, SFMC might provide a clearer view of the thrombogenic process and the reaction to anticoagulation treatment.

Important information to further investigate this relationship is provided by a recent comparative study of 98 patients treated with dabigatran etexilate, rivaroxaban, or warfarin. D-dim-

Author for correspondence:

Constantine Antonopoulos

First Department of Vascular Surgery, University of Athens Medical School, Attikon Hospital, Athens, Greece

E-mail: kostas.antonopoulos@gmail.com

ISSN 2732-7175 / 2025 Hellenic Society of Vascular and Endovascular Surgery Published by Rotonda Publications All rights reserved. https://www.heljves.com

er and SFMC levels were serially measured over a ten-day period while patients were grouped according to their treatment regimen. Despite being observational, the study's design identifies important trends that guide future research directions and clinical decision-making.

The study's temporal trend in SFMC levels was among its most illuminating conclusions. At baseline, all three groups—warfarin (WG), rivaroxaban (RG), and dabigatran (DG)—showed elevated SFMC, which is indicative of persistent coagulation activity linked to acute DVT. However, compared to those on warfarin, patients on rivaroxaban and dabigatran exhibited a more noticeable drop in SFMC levels by the fifth day of treatment. All groups' SFMC values had stabilized by day ten. Because of their targeted mechanisms of thrombin or factor Xa inhibition, rapid onset of action, and predictable pharmacokinetics, DOACs may have a faster antithrombotic effect, according to this pattern. Therapy stabilization, on the other hand, may be delayed by warfarin's delayed action, which calls for bridging with low molecular weight heparin and careful INR monitoring.

There are significant clinical ramifications to these SFMC trends. First of all, they highlight SFMC's potential as an early, sensitive biomarker for therapeutic efficacy in the treatment of DVT. In contrast to D-dimer, which tracks coagulation events by reflecting fibrin breakdown, SFMC records the active phase of fibrin formation. A sharp drop in SFMC during anticoagulation might be a sign of successful thrombogenesis suppression, which could eventually guide real-time treatment modifications or recurrence risk stratification.

The study's D-dimer trends provide a supplementary, albeit slightly more ambiguous, image. Contrary to expectations, there were no discernible differences between the therapies; by day five, D-dimer levels in all groups had increased significantly, and by day ten, they had only slightly decreased. As anticoagulation starts to break up pre-existing thrombi, there may be an increase in fibrinolytic activity, which could explain this paradoxical rise in the early stages of treatment. The interpretation of D-dimer as a short-term efficacy marker is complicated by this physiological response, even though it is consistent across all treatment modalities. Although D-dimer is helpful for initial diagnosis and may be useful for ruling out recurrence, its value in tracking short-term therapeutic response is less clear-cut than that of SFMC, as indicated by the limited decrease by day ten.

The inherent difficulties in managing warfarin are another important finding from the study. Due to its long clinical history and low cost, warfarin is still used worldwide, despite its numerous practical issues. Warfarin's effects are influenced by dietary interactions, drug-drug interactions, and interindividual variability, making it notoriously difficult to achieve and maintain therapeutic INR levels. A sizable percentage of patients in the study had dose titrations longer than seven days, underscoring the gradual and erratic onset of the full anticoagulant effect. The WG cohort's SFMC levels normalized more slowly as a result of this delay, which also supports the growing preference for DOACs, particularly in outpatient and resource-constrained settings where frequent monitoring is impractical.

The inherent difficulties in managing warfarin are another important finding from the study. Due to its long clinical history and low cost, warfarin is still used worldwide, despite its numerous practical issues. Warfarin's effects are influenced by dietary interactions, drug-drug interactions, and interindividual variability, making it notoriously difficult to achieve and maintain therapeutic INR levels. A sizable percentage of patients in the study had dose titrations longer than seven days, underscoring the gradual and erratic onset of the full anticoagulant effect. The WG cohort's SFMC levels normalized more slowly as a result of this delay, which also supports the growing preference for DOACs, particularly in outpatient and resource-constrained settings where frequent monitoring is impractical.

From a more general clinical standpoint, the results are consistent with a changing paradigm where anticoagulation for DVT is becoming more customized, not only according to risk profiles and comorbidities but also in response to biochemical feedback. In this regard, SFMC may be seen as a potential "theranostic" tool that helps to customize the length and

severity of therapy by acting as both a diagnostic and therapeutic tool. Individuals who exhibit quick SFMC normalization may be eligible for shorter treatment periods, which would lower their risk of bleeding and improve their quality of life. On the other hand, consistently high SFMC may call for more aggressive treatment or closer observation.

In addition to the clinical and scientific aspects, there are also economic ramifications. DVT is a systemic burden on health-care systems in addition to being a personal health concern for patients. Post-thrombotic complications cause substantial lost productivity and necessitate long-term care. Significant cost savings could result from a biomarker-driven approach that speeds up diagnosis, improves treatment, and lowers recurrence. The study's conclusions about the effectiveness of DOACs—particularly dabigatran and rivaroxaban—in quickly reducing coagulation activity support the case for their wider use, even in settings where cost is a concern. Although the initial costs of the medication are higher than those of warfarin, these costs may be offset by the decrease in complications, hospital stays, and monitoring needs.

In addition to the clinical and scientific aspects, there are also economic ramifications. DVT is a systemic burden on health-care systems in addition to being a personal health concern for patients. Post-thrombotic complications cause substantial lost productivity and necessitate long-term care. Significant cost savings could result from a biomarker-driven approach that speeds up diagnosis, improves treatment, and lowers recurrence. The study's conclusions about the effectiveness of DOACs—particularly dabigatran and rivaroxaban—in quickly reducing coagulation activity support the case for their wider use, even in settings where cost is a concern. Although the initial costs of the medication are higher than those of warfarin, these costs may be offset by the decrease in complications, hospital stays, and monitoring needs.